
Project 1

1 Introduction

In Project 1, we compared two sorting algorithms, selection sort and insertion sort. Insertion sort is an

algorithm which takes a cell and inserts it in the corresponding placement according to order. For

example, if we have an array A=[3,1,7,5,9], the algorithm would assume the first number as the smallest.

In the next loop, it would take the second number and consider whether it was smaller or greater than

the first. Because it is smaller, the number is sorted into the first position. This continues with all

numbers in the array. Selection sort is an algorithm which takes a cell and switches it with the lowest

number in the unsorted cells. Going back to array A, the algorithm would take the first number and

search for the smallest number in the cells after it. In this case, the smallest is 1. Thus, the 1 and the 3

would switch places. In essence, insertion sorting is like cutting a line while selection sort is swapping

places. In order to compare the two sorting algorithms, both will be restricted to a nested while loop in

a for loop. We will be using the timeit module in order to find the timeframe for runs with cell size

1000,2500,5000,7500, and 10000 of increasing, decreasing, and randomly sorted arrays.

2 Selection Algorithm (Lines 4-17)

The selection algorithm is very simple in nature; we choose a cell to change in the array, find the

minimum digit in the unsorted part of the array, and change the variables. Beginning with the first part

of our algorithm, we know that we need to eventually go through every cell in the array to change it.

Because there is repetition, we can use a for loop (line 6) that will go through the entire length of the

array. Lines 7 and 8 establish aliases to index the array. In order to find the minimum digit in the sorting

array, we need to go through every single number in the sorting array and establish whether it is smaller

than our cell we want to change. Thus, we need another loop, a while loop! Lines 9-11 determine the

minimum and create an alias in order for us to exchange variables later. Lastly, we need to exchange the

minimum value in the unsorted array with the cell. This part of the code was very problematic for me, as

I did not think it needed to be in the while loop. Upon further examination, I realized that not only

would the python language not allow me to put the change of variables outside the while loop, but also

that logically it had to go in the while loop. The exchange of variables is quite simple; one must first set

up a variable that will hold one of the values. Then, we can change the variables by using that extra

value. If we don’t add an extra variable, python will overwrite one of the variables, thus destroying the

previous relationship.

3 Insertion Algorithm (Lines 19-26)

The insertion algorithm shares similar traits with the selection algorithm but differs greatly in how it

functions. The insertion algorithm involves choosing a cell in the array, looking to its left neighboring

cell, and deciding if it is smaller or not. Then, the variables are shifted. In order to apply this, the cell we

want to move is first indexed with a for loop and establishment of aliases (lines 19-22). It is important to

note that we must start with the second cell because the first cell has no neighbors to its left! The

remainder of the code (lines 23-26) shows that while the digit to the left of the cell is smaller than the

digit inside the cell, the two must switch values, causing the digit in the cell to “slide” to its position.

4 The Timeit Module (Lines 28-71)

In order to generate our code, we need to generate results. Starting with generating an increasing array,

we can create a list (line 35) , add a random value to the list(line 36), and then add a random number

greater than the last to the list for some length of the list. The list is then copied in order to be run on

both insertion and selection sort. Because our project guidelines indicate we want to do this for five

sizes, we can create a for loop to repeat this (line33 and 30). Decreasing arrays (lines 43-48) are done

almost identically; the parameters change for line 47. The random array is done a little differently(lines

51-54). We create a list and then generate random numbers the size of the array. Once again, the list is

copied. Both decreasing and random array generation algorithms are nested inside the for loop

accounting for size.

Continuing with the code, we then must apply the selection_sort and insertion_sort algorithms to our

lists (lines 56-61). Lastly, we must print the timings(lines 63-71). In order to print all the timings for each

list, two for loops are created containing the selection and insertion values. This entire block of code

(lines 56-71) is contained inside the for loop accounting for size, and will be repeated for each size. Thus,

the output will be three lines of selection sorting (increasing, decreasing, random) and three lines of

insertion sorting (increasing, decreasing, random), all which repeat over different number of cells for a

total of thirty results.

5 The Results

For this project, we included three distributions of

arrays: an array in increasing order, an array

ordered in decreasing order, and one in

random order. From the graphs, it can be

seen that insertion sort performed the best in

all three circumstances. Selection sort grows

exponentially in each distribution, while

insertion sort increases minimally. We can

note that as the number of cells increase,

both sorting algorithms take longer to

process. Selection sort ranged from ~0.24

seconds to ~24 seconds, while insertion sort

ranged from ~9 x 10-5 seconds to ~0.0015 seconds. The fastest sorting algorithm occurred for decreasing

insertion at 1000 cells. From the averages, we can note that insertion sort had the fastest results with

random distributions across all number of cells, while selection sort struggled the most with increasing

distributions. In order to confirm this, many more trials and number of cells need to be run, as the

numbers for each distribution tend to be quite similar. Why does one algorithm outperform the other?

In essence, one algorithm searches through all the necessary sorted cells (insertion) while the other

searches through all the unsorted cells. Because insertion stops once it has found the position for

placement, it streamlines the time necessary for sorting.

Data Table

