
Project 4: It’s Just a Jump to the Left and a Step to the Right 

Project four aims to implement recursive algorithms and unit testing to an unbalanced binary search 

tree. This project includes two python files: Binary_Search_Tree.py and BST_Test.py.  

Binary_Search_Tree.py- the Binary_Search_Tree class 

The Binary_Search_Tree file initializes the binary tree, allows functions of insertion and deletion, and 

includes three types of traversal methods.  

Initialization of Nodes: 

For this project, nodes compromised the binary search trees, so a nested Node class was necessary with 

four attributes. Self.value holds a node’s value and self.left and self.right served to reference the left and 

right children of the nodes. Unlike previous projects, the height was stored in a node attribute, 

self.height. Rather than keeping one updated height of the tree, each node held a number reflecting 

that node’s height. Further information about the height will be explained in later methods. Runtimes of 

initialization of attributes are always constant, as a value is simply being assigned. 

Initialization of the Binary Search Tree 

One of the identifying characteristics of a binary search tree is the root attribute. In order to initialize a 

BST, a root attribute must be initialized and allocated as None. It is important to note that even when 

the BST has no nodes, it is still a binary search tree with a height of 0. The root attribute will be later 

assigned to a node. The runtime of this initialization is constant since the root attribute is being assigned 

a value. 

Inserting an Element 

An important feature of this project requires allowing the user to modify the BST. Our first function to 

allow modification will be the insert_element method. With this public function, the user will be able to 

insert a value of their choice into the tree. It is important to note that this function will call a second 

private function which will perform the recursive steps,  __rins. This private function demands two 

parameters, a specified node, t, and the value which the user wants to input, x. In line 16, the public 

function selects these two parameters to be the value the user inputs and the node with the root 

attribute. Python will then run the __rins method. This method will start with the root node and recur 

until it reaches the place of insertion, or the base case. Let’s assume there are no nodes inserted into 

our tree yet. When our user tries to insert value 7 and the __rins function is called, Python will search 

for a node with the self.__root attribute, as demanded in the parameters. It will then realize that 

self.__root=None, and thus the first conditional in line 25 is met. This is our base case; it is the simplest 

step that we know how to do in any recursion. Line 26 will run, thus creating a Node t with the value 7 

and a height attribute of one. The __rins method will then return t to the recursive call in the public 

function, and self.__root will be assigned to the node t.  

Although inserting one node into the tree is quite simple, inserting nodes beyond the first requires a 

little bit more computational power. Let us assume we are inserting a node beyond the first such as in 

the tree below. Assume that we want to insert a value of 34. Conceptually, we know that we must travel 

to the right of 33 since 34>33. Then we must travel to the left of 36 since 34<36. Lastly, we know that 

we must travel to the left of 35 since 34<35. Since 35 has no children, we can create a node. 



  

How does this transfer to code? When the user inputs the value as 34 and the private function is 

initialized, t will be the node with the root attribute. Because t is not None, it will skip over the first 

conditional onto the next. The next conditional demands that the user’s value must be less than the 

value of the root node, so it will continue on to the next conditional. This third conditional (line 33) 

states that if the user’s input value x is greater than the value of the root node, it must run the below 

functions. The below function is another recursive call. Thus, t will recur to the right node. Since 

recursions are essentially functions within functions, we now must go through the entire __rins method 

once more with the next function’s t value, which will be the root node’s right child (t.value=36). If we 

go through this function again, we will once again recur to the left. It is important to note that once the 

function reaches t.value=35, it recurs again to the left. However, the node with value 35 does not have 

any children, so its left attribute will be None. This will please the first conditional (our base case) as it 

did in the previous example when inserting the first node into the tree. Now that the base case function 

is “solved”, the rest of our functions can also be “solved”. In other words, each function will be able to 

return a value t until we once again are standing at our root node. Therefore, when the base case 

returns a t node with value 34 to the previous function, then a t node with value 35 will return to its 

previous function, and so on. Once the root node is returned to the public function, the self.__root 

attribute is reattributed to the node, and the entire tree will have formed it’s links across its .left and 

.right attributes. Finally, the public function will always return the root. 

There is one exception case in the private insertion method. In the case where the user inputs a number 

that is already in the tree, a Value Error is raised. One may wonder about the placement of the 

exception. When looking for a repeated value, we could walk throughout the entire tree or run through 

a list before calling the private recursion method. However, this would be quite inefficient in runtime 

and impractical. Rather, we can assume that the value isn’t in the tree and run through our recursions. If 

the value being added to the tree is already in the tree, then we will come across it in our recursions. 

Before discovering this, I had created a conditional in the public function which would check for the 

value in a list with the tree’s value. However, this caused almost every test function to crash, as I could 

not find a way to reset the list every time a new test was run. Although I had considered placing the 

Value Error conditional in the recursion method before attempting the list, my conditionals in the 

recursion method all began with if at the time. I quickly realized that the __rins method needed to have 

mutually exclusive conditionals because the base case would indirectly set t.value=x, thus triggering the 

ValueError. Changes were made in order to avoid such errors. 



 

The runtime for insertion requires one to look at several functions. For example, the public 

insert_element function is calling upon the __rins function, and the __rins function calls the 

height_function in its worst cases. Thus, we must analyze all the functions each to understand the 

runtime of insertion. In its worst case, the __rins function will have to call the height_function. This 

function is constant, as Python is simply grabbing a known value, t.right.height or/and t.left.height, 

applying arithmetic to it, and reassigning t.height to that number. This will not affect the runtime of 

__rins because it is constant. The __rins function in its worse case will have linear time. If we have a 

completely unbalanced tree such as a linked list, we will have to recur through every single node to 

insert a leaf. Because the runtime will thus depend on how many nodes are already inserted, it will have 

a linear runtime. The public insertion function essentially does not do anything other than reassign the 

root attribute to the returned value of the private recursion function. Thus, it does not add to runtime. 

Overall, the insert_element function will thus have linear runtime in its worst case. 

 

The Height Function in the Insert Function 

In order to explain the rest of the __rins method, we must jump to the get_height and height_function 

methods. Finding the height of the tree seemed very challenging at the start; unlike heaps, the height 

does not rely on a mathematical method. Inserting and removing nodes does not guarantee that the 

height will change either. Thus, we had to find a way to count the nodes while removing or inserting 

them. Our game plan is as follows: each node will contain a height attribute which will be updated as 

nodes are inserted or removed. Let us go back to our last example of insertion. We inserted the value of 

34 and labeled its height attribute as 1. What about the height attributes of the node above that? When 

the 34 node returns to the previous function, the previous node needs to change its height attribute 

too. Therefore, it calls the height_function for that node t. Assuming we are counting the height from 

the leaf nodes upwards, we need to guarantee that we are taking every possible pathway’s height into 

account. Thus, the 35 node needs to look at both of its children’s height attributes and decide which 

pathway is deeper. In other words, it needs to find the maximum height of its children to change its own 

height. The 35 node will look to its left and see a height of one, but when it looks to its right, it cannot 

find a height because t.right==None. Thus, it needs to take on the height of the left child+1. This is seen 

in the second conditional of the height_function method (line 167). When that recursive cycle returns t 

to the previous recursive cycle, node 36 will now have to reestablish a height value for itself. Since it has 



both a left and a right child, it will need to compare its two children’s height attributes and select the 

maximum. In this case, the first conditional will run (line 164), thus needing to find the maximum of 2 

and 2. Luckily for us, the max function in Python will realize that these are the same number and will 

choose 2. 1 is added to the found maximum thus giving the 36 node a height of 3. When this recursive 

cycle returns to the previous function(which will now be our first recursive call), we will now have to 

update the root node’s height attribute. Once again, we have two children, so it will look at its left 

child’s height attribute (in this case it is 1) and at its right child’s height attribute (in this case it is 3). The 

maximum between 3 and 1 is 3, so 1 is added to 3 and the new height is assigned to the root node. 

Although this has established the height of the tree, the height_function does not return the height to 

the user.  

In order to get the height of the function, the user must call the get_height method. This method is 

compromised of two conditionals. The first conditional runs in constant time; if the root attribute is not 

assigned to a node, it returns a height of zero. In other words, if there are no initialized nodes, the 

height must be zero. The second conditional will also run in constant time. Because we have consistently 

updated the height attributes of each node in the tree, all we need to do is call the root’s height 

attribute. This will be the overall height of the tree, as it is the top most node.  

Although we have explained the height functions in context of the insertion functions, it should be 

recognized that this height algorithm will work in the exact same way for removal functions. Let us look 

at the removal algorithm.  

Removing Elements 

The removal methods are very similar to the insertion elements with the exception that we have 

multiple cases in our base case. The public removal function, remove_element, prompts the user to 

input a desired value to get rid of. The public function then calls the private function, __rrem, which 

once again takes parameters x and t. Like in the input functions, t once again is first set to self.__root. 

We have one exception in our recursive removal method; if the value input by the user is not found 

anywhere in the tree, we raise a Value Error. Otherwise, it will continue. Our first conditional describes 

our base case. Unlike the input function, our base case occurs when we have found the desired removal 

node, or when t.value==x. From here, we have several options. Let us assume that we are removing one 

node, 7,  in a one node tree. Because the value of the node with the attribute self.__root matches the 

user input of 7, it will look at the nested conditionals. The first conditional is for nodes being removed 

that do not have children. Because we only have one node in our tree, this would be the appropriate 

conditional. Thus, we return the value None. When we return a function, the function ends. Thus, it 

reassigns self.__root to None in the public function.  

What about our other cases? Let’s assume we wanted to remove the root node when it had one left 

child. The first conditional in our base case would not work, but the second one would. Inside that 

conditional lies another set of nested conditionals. Because we have already told the interpreter that we 

have one node, all we need to do is tell Python which one it is. Because the root node’s left child is not 

None, the first conditional is true. Thus, the left child is returned to the public function and set as the 

new root. This logic also follows for the right child. What happens if our root node has two children? Our 

base case would then fall under the third conditional, where neither left nor right children are None. 

Thus, we need to find the minimum value to the right of the root node. In this case, we only have one 



child on the right. Let us reimagine the example in order to best understand the algorithm. Assume the 

tree looks like the one below and we are still removing the root node. 

 

If we want to remove 33, we must look to its right child. This right child is set to a temporary variable 

called current. We must find the minimum value. We know that minimum values lie on the left side of 

nodes. Therefore, we must walk through as many left nodes as we can to reach the minimum. In lines 

70-72, we perform a walk through the left-most nodes. The temporary variable is changed every time a 

smaller left child is found. This minimum value, 34, will take the place of the current t value, which in 

this case is the root value 33. However, we must still make sure to remove the extra 34 leaf node. Thus, 

the recursive removal function is called here, allowing that node to be removed. Although we have 

assumed that the node we are removing is the root node in order to explain the base cases, recursion 

will be necessary for cases in which the base case is not the root node. If we were trying to remove 50, 

we would need to travel down the tree in the same recursive manner that we did for insertion. The only 

difference between insertion and removal is the base case. The height and the recursive logic both 

remain the same.  

 



The runtime of removals is very similar to the runtime of insertions. Because it depends on the public, 

private, and height_function methods, we must look at all of them. We previously mentioned that the 

height_function runs in constant time. We also mentioned that the worst case for the private insertion 

function was linear, due to its worst case being a linked list with the insertion being at the leaf node. 

This is also the same for the removal private function. In its worst case, we would have to remove the 

leaf node of the completely unbalanced BST. The extra conditionals in the base case do not add to the 

runtime. The public function will have linear runtime, as it depends on the private function and does not 

have any element that adds to runtime.  

 

Tree Traversals 

As we learned in class, there are three ways in which we can order a tree in an array or string. Because 

this project does not have a visual component, the tree traversals will serve to print the tree itself. We 

have three tree traversals: in order, pre order, and post order. All three algorithms are very similar in 

their code, as they are performing very similar things in different orders. In order to understand tree 

traversals, one needs to look at a tree as many small subtrees making up a big tree. Please note that this 

should not be taken literally, but it will serve to understand how recursions tie into this concept. Let us 

begin with in order traversals. The user will call a public in_order traversal function. This function will 

return an empty tree [ ] if there are no nodes. If there are initialized nodes, the function will create an 

empty list, call the private recursive in order function, and make changes to the formatting and type 

object. Once the public function calls the private recursive in order function, the recursive process 

begins. In in order traversals, we begin at the root node. We recursively go through the left-most nodes 

until t returns None. Once t is None, we are at the smallest possible function for which we have an 

answer to. This will return the function, thus throwing us back to the previous recursive call. We can 

then append this t value to the empty list. Then, another recursive function is called, and thus we must 

recur through the current t’s right children. This continues until t is None, and thus the function is 

returned. With this combination of recursions, we can traverse throughout the tree and return the list to 

the public function. The public function then converts the list into a string and makes the adequate 

stylistic changes. Pre order traversals and post order traversals are almost identical in nature; the only 

difference is the order in which things are appended and recurred. In pre order traversals, we begin by 

appending the t value for each recursive call. This is why pre order traversals always begin with the root. 

Then, they recur left until they hit the base case, and lastly recur through the right children until they hit 

the base case. Post order will recur through al the left children until t is None, then through the right 

children until t is None, and will append the t value for each recursive call. It should be noted that there 

are as many recursive calls as there are nodes in the trees. In other words, the recursive methods will 

make sure every single node is appended to the list at their corresponding point. None will be left out.  

The runtime for tree traversals depends on both the private and public functions. The private function 

has two recursive calls, thus leading the worst case runtime to be O(n). The public function simply makes 

changes to the string or list, which all run in constant time. Thus, the public function will be linear time 

since it depends on the private function. Because all three tree traversals have essentially similar logic, 

all will be linear time. 

The String Method 



The string method is used to print out the BST in the preferred tree traversal. Although the user can call 

any of the tree traversals, this method will avoid the program from crashing if the BST is printed and will 

make it easier to print out a tree. The string method will run in linear time since it depends on the tree 

traversal functions but does not add to runtime in any other manner. 

BST_Test.py 

The BST_Test file runs unit tests for several scenarios. There is a total of 71 test cases. The testing file is 

organized by traversal type, creating a total of three main sections. A subsequent height function 

section follows the three main sections, as height does not need a trasversal output. Each traversal 

section should have identical tests; the only difference in test is the ouput order. The two traversal 

subsections serve to test the overall functioning of insertion and removal. 

Insertion Test Cases 

The insertion test cases test the function of conditionals, recursion, and ValueErrors. My test cases make 

sure that the tree is empty before any nodes are inserted into it. I tested inserting at the root node, 

inserting at the left child, inserting at the right child, and creating multiple leveled, unbalanced trees. 

Although this was not included in the unit test, all parts of the insertion functions were shown to run by 

inserting print statements. In this manner, I could not only conceptualize how the algorithm was 

working, but actually see it. Repeated Value Insertions were tested in order to induce a ValueError. Both 

floats and strings were tested in the cases in order to test other object types and the functioning of 

mathematical signs such as <,>, and =.  

Removal Test Cases 

Due to the many conditionals of the removal test cases, this subsection was much larger. Value Errors 

were tested by removing elements when there were no nodes in the tree, by removing elements that 

had already been removed in the tree, and when the value did not exist in the tree. Normal functioning 

of the remove function was also tested, such as removing the root of a one node tree, removing a leaf 

node, removing a node with a left child, removing a node with a right child, and removing a node with 

two children. All base cases seemed to function properly. Other cases tested include removing every 

single node and creating combinations of insertion and removal of nodes. This was done to test 

recursion and to make sure each function worked when repeated and when placed in any order. 

Removals were also tested with print functions outside of the unit testing to ensure proper functioning. 

Some Removal and Insertion functions include height checks. 

Height Functions 

The height functions essentially repeat several of the test cases in insertion and removal. They test to 

make sure that the height only changes under specific conditions rather than every time a node is 

inserted and removed.  
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