
1

Neural Networks: The Backpropagation Algorithm

Annette Lopez Davila

Math 400, College of William and Mary

Professor Chi-Kwong Li

Abstract

This paper illustrates how basic theories of linear algebra and calculus can be combined with

computer programming methods to create neural networks.

Keywords: Gradient Descent, Backpropagation, Chain Rule, Automatic Differentiation,

Activation and Loss Functions

1 Introduction

As computers advanced in the 1950s, researchers attempted to simulate biologically inspired

models that could recognize binary patterns. This led to the birth of machine learning, an

application of computer science and mathematics in which systems have the ability to “learn” by

improving their performance. Neural networks are algorithms that can learn patterns and find

connections in data for classification, clustering, and prediction problems. Data including

images, sounds, text, and time series are translated numerically into tensors, thus allowing the

system to perform mathematical analysis.

In this paper, we will be exploring fundamental mathematical concepts behind neural networks

including reverse mode automatic differentiation, the gradient descent algorithm, and

optimization functions.

2 Neural Network Architecture

In order to understand Neural Networks, we must first

examine the smallest unit in a system: the neuron. A

neuron is a unit which holds a number; it is a mathematical

function that collects information. These neurons are

connected to each other in layers and are assigned an

activation value; the higher the activation value, the greater

the activation. Each activation number is multiplied with a

corresponding weight which describes connection strength

from node to node. A neural network has an architecture of

input nodes, output nodes, and hidden layers. For each

node in a proceeding layer, the weighted sum is computed:

` 𝑧𝑖 = 𝑤1𝑎1 + 𝑤2𝑎2 + ⋯𝑤𝑛𝑎𝑛

𝑤ℎ𝑒𝑟𝑒 𝑖 = [1, # 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟] and n=# of activation numbers

The weighted inputs are added with a bias term in order for the output to be meaningfully active.

2

𝑧𝑖 = 𝑤1𝑎1 + 𝑤2𝑎2 + ⋯𝑤𝑛𝑎𝑛 + 𝑏

A neural network’s hidden layers have multiple

nodes. For the first node in the hidden layer, we

multiplied the corresponding weights and biases

against the activation number. This must be

repeated throughout the nodes in the hidden

layer. The above equation can be consolidated

into vectors in order to exemplify this:

Each row in matrix 𝑤⃗⃗ represents the weights corresponding with each hidden layer, while the

columns represent the weights corresponding to a particular activation number.

3 The Activation Function

The function 𝑧𝑖 is linear in nature; thus, a nonlinear activation function is applied for more

complex performance. Activation functions commonly used include sigmoid functions,

piecewise functions, gaussian functions, tangent functions, threshold functions, or ReLu

functions.

Function Name Function

Sigmoid/Logistic 𝑓(𝑥) =
1

1 + 𝑒−𝛽𝑥

Piecewise Linear 𝑓(𝑥) = {

0 𝑖𝑓 𝑥 ≤ 𝑥𝑚𝑖𝑛

𝑚𝑥 + 𝑏 𝑖𝑓 𝑥max > 𝑥 > 𝑥𝑚𝑖𝑛

1 𝑖𝑓 𝑥 ≥ 𝑥max

Gaussian 𝑓(𝑥) =
1

√2𝜋𝜎
𝑒

−(𝑥−𝜇)2

2𝜎2

Threshold/Unit Step 𝑓(𝑥) = {
0 𝑖𝑓 0 > 𝑥
1 𝑖𝑓 𝑥 ≥ 0

ReLu 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

Tanh 𝑓(𝑥) = tanh (𝑥)

3

Activation function choice depends on the

range needed for the data, error, and speed.

Without an activation function, the neural

network behaves like a linear regression

model. The need for an activation function

comes from the definition of linear

functions and transformations. Previously

we discussed the linear algebra from the

input step to the hidden layer. The solution

of the function would resolve as a matrix of

weighted sums. In order to calculate an

output, the weighted sums matrix becomes

the “new” activation layer. These activation

numbers have their own sets of weights and biases. When we substitute the activation matrix for

the weighted sums matrix, we see that a composition of two linear functions is a linear function

itself. Hence, an activation function is needed.

Proof: Composition of Linear Functions

𝑧 1 = 𝑤⃗⃗ 1𝑎 + 𝑏1

𝑧 2 = 𝑤⃗⃗ 2𝑧 1 + 𝑏2

𝑧 2 = 𝑤⃗⃗ 2(𝑤⃗⃗ 1𝑎 + 𝑏1) + 𝑏2

𝑧 2 = [𝑤⃗⃗ 2𝑤⃗⃗ 1]𝑎 + [𝑤⃗⃗ 2𝑏⃗ 1 + 𝑏⃗ 2]

𝐼𝑓 𝑊 = [𝑤⃗⃗ 2𝑤⃗⃗ 1] 𝑎𝑛𝑑 𝐵 = [𝑤⃗⃗ 2𝑏⃗ 1 + 𝑏⃗ 2], 𝑡ℎ𝑒𝑛 𝑧 2 = 𝑊𝑎 + 𝐵,𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

With the activation function, the new weighted sum becomes:

4 The Cost/Loss Function

A neural network may have thousands of parameters. Some combinations of weights and biases

will produce better output for the model. For example, in a binary classification problem, the

algorithm will classify some input as one of two things. The output node with the highest

activation number will determine how the input is classified. In a binary classification problem,

there are two labels. For example, an image can be determined to be a cat or dog; the feature

“cat” is given the label of 0 and “dog” is given label 1. Different weights and biases will produce

different output. How can we determine which combination of parameters will be most accurate?

In order to measure error, a loss function is necessary. The loss function tells the machine how

far away the combination of weights and biases is from the optimal solution. There are many loss

ℎ𝑖 = 𝜎(𝑧𝑖)= 𝜎(𝑤1𝑎1 + 𝑤2𝑎2 + ⋯𝑤𝑛𝑎𝑛 + 𝑏)

h1̅̅ ̅ = 𝜎(𝑤⃗⃗ 𝑎 + 𝑏⃗)

4

functions that can be used in neural networks; Mean Squared Error and Cross Entropy Loss are

two of the most common.

MSE Cost= 𝛴0.5(𝑦 − 𝑦̂)2

Cross Entropy Cost= 𝛴(𝑦̂ 𝑙𝑜𝑔(𝑦) + (1 − 𝑦̂) 𝑙𝑜𝑔(1 − 𝑦))

The loss function contains every weight and bias in the neural network. That can be a very big

function!

𝐶(𝑤1, 𝑤2, … , 𝑤ℎ, 𝑏1, … , 𝑏𝑖)

5 The Backpropagation Algorithm

The objective of machine learning involves the optimization of the chosen loss function. With

every epoch, the machine “learns” by adapting the weights and biases to minimize the loss.

Optimization theory centers itself on calculus. For neural networks in particular, reverse-mode

automatic differentiation serves a core role.

In order to minimize the cost function, one must determine which weights and biases to adjust.

Computing the gradient with respect to the parameters can help us do just that, as by definition

the gradient is a vector of partial derivatives of 𝐶(𝑤1, 𝑤2, … , 𝑤ℎ, 𝑏1, … , 𝑏𝑖). As we recall,

derivatives measure the change of a function’s output with respect to its input. The gradient of

the cost function tells us in which direction 𝐶(𝑤1, 𝑤2, … , 𝑤ℎ, 𝑏1, … , 𝑏𝑖) decreases most quickly.

This is often known as Gradient Descent. With each epoch, the machine converges towards the

local minimum. Automatic differentiation combines the chain rule with massive computational

power in order to derive the gradient from a potentially massive, complex model. In reverse, this

algorithm is better known as Backpropagation. Backpropagation is recursively done through

every single layer of the neural network.

In order to understand the basic workings of backpropagation, let us look at the simplest example

of a neural network: a network with only one node per layer.

We have derived the equations for cost, weighted sum, and activated weighted sum:

1

1 The cost function is simplified for proof of concept

𝑧𝐿 = 𝑤𝐿𝑎𝐿−1 + 𝑏𝐿

𝑎𝐿 = 𝜎(𝑧𝐿)

𝐶 = (𝑎𝐿 − 𝑦)2 ∗

5

We can determine how sensitive the cost function is to changes in a single weight. Beginning

from the output, we can apply the chain rule to every activation layer. For a weight between the

hidden layer and output layer, our derivative is:

𝛿𝐶𝑘

𝛿𝑤𝐿
=

𝛿𝑧𝐿

𝛿𝑤𝐿

𝛿𝑎𝐿

𝛿𝑧𝐿

𝛿𝐶𝑘

𝛿𝑎𝐿

With the definition of the functions, we can easily solve for the partial derivatives:

𝛿𝐶𝑘

𝛿𝑎
= 2(𝑎𝐿 − 𝑦)

𝛿𝑎𝐿

𝛿𝑧𝐿
= 𝜎′(𝑧𝐿)

𝛿𝑧

𝛿𝑤𝐿
= 𝑎𝐿−1

𝛿𝐶𝑘

𝛿𝑤𝐿 = 𝑎𝐿−1𝜎′(𝑧𝐿) 2(𝑎𝐿 − 𝑦)

This method is iterated through every weight, activation number, and bias in the system.

Previously, we calculated the derivative of one particular cost function with one variable.

However, in order to account for every weight in that layer, the average of the derivatives is

taken:

𝛿𝐶

𝛿𝑤𝐿
=

1

𝑛
∑

𝛿𝐶𝑘

𝛿𝑤𝐿

𝑛−1

𝑘=0

Similarly, we can calculate the sensitivity of the cost function with respect to a single bias

between the hidden layer and the output layer and the derivative accounting for every bias in a

layer:

𝛿𝐶𝑘

𝛿𝑏𝐿 =
𝛿𝑧𝐿

𝛿𝑏𝐿

𝛿𝑎𝐿

𝛿𝑧𝐿

𝛿𝐶

𝛿𝑎𝐿= 𝜎′(𝑧𝐿) 2(𝑎𝐿 − 𝑦)
𝛿𝐶

𝛿𝑏𝐿 =
1

𝑛
∑

𝛿𝐶𝑘

𝛿𝑏𝐿

𝑛−1

𝑘=0

What happens when we go beyond the output layer and the preceding hidden layer? The chain

rule is applied once more, and the derivative changes in account to its partials. For example, the

derivative below accounts for the partials of the cost function with respect to an input activation

number.

𝛿𝐶𝑘

𝛿𝑎𝐿−1 =
𝛿𝑧𝐿

𝛿𝑎𝐿−1

𝛿𝑎𝐿

𝛿𝑧𝐿

𝛿𝐶

𝛿𝑎𝐿= 𝑤𝐿𝜎′(𝑧𝐿) 2(𝑎𝐿 − 𝑦)

Neural Networks tend to have several thousand inputs, outputs, and nodes; the above equations

seem highly oversimplified. Although adding complexity changes the formulas slightly, the

concepts remain the same, as seen below:

6

𝐶𝑚 = ∑ (𝑎𝑗
𝐿 − 𝑦𝑗)

2

𝑛𝐿−1

𝑗=0

𝑎𝑗 = 𝜎(𝑧𝑗
𝐿)

𝑧𝑗
𝐿 = ⋯+ 𝑤𝑗𝑘

𝐿 𝑎𝑘
𝐿−1 + ⋯

𝛿𝐶𝑚

𝛿𝑤𝑗𝑘
𝐿

=
𝛿𝑧𝑗

𝐿

𝛿𝑤𝑗𝑘
𝐿

𝛿𝑎𝑗
𝐿

𝛿𝑧𝑗𝐿

𝛿𝐶𝑚

𝛿𝑎𝑗
𝐿

𝛿𝐶𝑚

𝛿𝑎𝐿−1
= ∑

𝛿𝑧𝑗
𝐿

𝛿𝑎𝑘
𝐿−1

𝛿𝑎𝑗
𝐿

𝛿𝑧𝑗𝐿

𝛿𝐶𝑚

𝛿𝑎𝑗
𝐿

𝑛𝐿−1

𝑗=0

By calculating every derivative of each weight and bias, the gradient vector can be found.

Although one could try to compute the gradient of a neural network by hand, the vector will

usually be in complex dimensions unfathomable for us to decipher. Thus, with computational

help, our neural network can perform such intricate calculations, and repeat them hundreds, if

not thousands of times until the minimum is reached.

∇𝐶 =

[

𝛿𝐶

𝛿𝑤1

𝛿𝐶

𝛿𝑏1

⋮
𝛿𝐶

𝛿𝑤𝐿

𝛿𝐶

𝛿𝑏𝐿]

6 Applications and Further Research

Automatic differentiation has many applications other than in machine learning such as in Data

Assimilation, Design Optimization, Numerical Methods, and Sensitivity Analysis. It is efficient,

stable, precise, and known to be a better choice than other types of computer-based

differentiation. Backpropagation has been called into question recently, as it does not learn

continuously. For example, our brains learn continuously; they do not forget information when

we learn something new. Because of this, backpropagation may be sidelined in Machine

Learning in the future.

Applications of Neural Networks trained with Backpropagation vary greatly. Such applications

include sonar target recognition, text recognition, network controlled steering of cars, face

recognition software, remote sensing, and robotics.

7

7 Works Cited

Images

(n.d.). Retrieved September 03, 2020, from

https://www.bing.com/images/search?view=detailV2,fashion mnist shoe

(n.d.). Retrieved September 03, 2020, from

https://www.bing.com/images/search?view=detailV2,Gradient Descent Animation 3D

(n.d.). Retrieved September 03, 2020, from

https://www.bing.com/images/search?view=detailV2,loss vs accuracy function neural

network

(n.d.). Retrieved September 03, 2020, from

https://www.bing.com/images/search?view=detailV2,neural netwrok diagram

(n.d.). Retrieved September 03, 2020, from

https://www.bing.com/images/search?view=detailV2,neural netwrok diagram

(n.d.). Retrieved September 03, 2020, from

https://www.bing.com/images/search?view=detailV2,sigmoid function

(n.d.). Retrieved September 03, 2020, from

https://www.saedsayad.com/artificial_neural_network.htm

Sources

Gajawada, S. (2019, November 19). The Math behind Artificial Neural Networks. Retrieved

September 03, 2020, from https://towardsdatascience.com/the-heart-of-artificial-neural-

networks-26627e8c03ba

Kostadinov, S. (2019, August 12). Understanding Backpropagation Algorithm. Retrieved

September 03, 2020, from https://towardsdatascience.com/understanding-backpropagation-

algorithm-7bb3aa2f95fd

Repetto, A. (2017, August 19). The Problem with Back-Propagation. Retrieved September 03,

2020, from https://towardsdatascience.com/the-problem-with-back-propagation-

13aa84aabd71

Silva, S. (2020, March 28). The Maths behind Back Propagation. Retrieved September 03, 2020,

from https://towardsdatascience.com/the-maths-behind-back-propagation-cf6714736abf

Skalski, P. (2020, February 16). Deep Dive into Math Behind Deep Networks. Retrieved

September 03, 2020, from https://towardsdatascience.com/https-medium-com-piotr-

skalski92-deep-dive-into-deep-networks-math-17660bc376ba

Victor Zhou. (n.d.). Machine Learning for Beginners: An Introduction to Neural Networks.

Retrieved September 03, 2020, from https://victorzhou.com/blog/intro-to-neural-networks/

https://www.saedsayad.com/artificial_neural_network.htm
https://victorzhou.com/blog/intro-to-neural-networks/

