
1

Enhancing Recipe Recommendations through Embedded

Clustering Approaches

Annette Lopez Davila

July 12, 2023

1. Abstract

Food recommendation systems play a crucial role in assisting discovery of new recipes for users

based on preference, ingredients, and health. In this paper, we present a recipe recommendation

algorithm that leverages embedding with clustering & similarity analysis for ingredient-based

input. This approach has been used for several recommendation systems recently with results

that compete with state-of-the-art recommendation systems. We will use multi-modal data to

understand further similarities between recipes and ingredients and conduct exploratory

analysis of both the data and the model with further preprocessing and fine-tuning. The

performance of our model will be compared to state-of-the-art recommendation systems using

precision, recall, F1 score, and NDCG in future steps. Further, we will cross-examine the

generated ingredient recipe list with existing recipes both in the dataset and beyond. Through

integration with smart devices, this project aims to assist users in making informed decisions

about what to cook.

2. Introduction to Recipe Recommendation Systems

The Internet currently has over 10,000 cooking websites, providing users with an overwhelming

amount of recipes to search through. Creating a recommendation system can assist users with

such filtering. Filtering features within recommendation systems can include nutritional values,

type of cuisine, cooking processes, etc.[6]. Because there is no limit on ingredients used for

recipes and few ratings for recipes exist, challenges for preference-based recommendation can

include the cold-start and sparse data problems.

2.1 Background

As user access to smart devices and instant information retrieval continues to rise, the

importance of diet preferences and simplified meal planning has also grown. Consequently,

efficient recipe recommendation systems are necessary to cater to these evolving needs.

Although extensive information can be found on the internet, it can be overwhelming for users to

2

search for what they are looking for, let alone vocalize their preferences. Studies have shown that

the excess of options on the internet leads to more frustration, making user-based

recommendation systems a vital solution for simplifying decision-making processes with curated

personalized content.

This paper seeks to address common research questions associated with food recommendation

systems such as:

• Can embedding techniques effectively represent multimodal data such as ingredients and

recipe images to capture a meaningful relationship with the recipe data?

• Does providing recipe instructions benefit or confuse the model’s ability to capture

meaningful relationships?

• Do clustering and similarity technologies enhance the understanding of dependencies in

the recipe dataset leading to improved results?

• How well does the recommendation algorithm perform in generating diverse and relevant

recipe suggestions based on user input ingredients?

• How well does this recommendation system perform in real-world scenarios, and how

adaptable is it to diverse culinary preferences and user input?

2.2 Related Work and Current State-of-the-Art Research

Over the years, several recipe recommendation systems have been proposed based on different

constraints. Food recommendation systems can be categorized into four categories: health related

systems, ingredient-based systems, time-aware systems, and cluster-based systems. Health based

systems incorporate nutritional factors into recommendation models, allowing users to select

healthier eating habits. Ingredient-based recommendation systems focus on the content of recipes

as well as user ratings and constraints regarding specific ingredients. Time-aware

recommendation systems attempt to capture temporal information of user ratings, allowing the

system to weigh the importance of older and newer user ratings to create a better preference

prediction. Cluster-based models deploy grouping mechanisms for food items, where similar

foods are identified and ratings for unknown foods can be predicted. This eliminates the cold-

start problem of not having user preference initially. Our system will target ingredient-based

content in the current phase with cluster-based methods and will delve deeper into expanding the

model for user preference in the next phase.

2.3 Ingredient-Based Systems

Food recommendation algorithms tackle the information overload problem internet users face by

using intelligent algorithms to make personalized food recommendations from a wide range of

choices. All recommendation algorithms are divided into three search factors: attribute tagging,

visual searches, and natural language searches. Attribute tagging involves applying automated

food tagging and categorization to data, allowing users to filter search through different food

attributes. Visual searches use computer vision to find and suggest foods that are most visually

similar to the images they upload. Natural language searches involve customers searching for

phrases to describe a particular recipe. When approaching a recommendation system, there are

3

two basic approaches: collaborative filtering and content-based filtering, in which the former

relies on historical interactions and the latter on item characteristics. Content-based filtering will

rely on informative content descriptors to create a prediction. Collaborative filtering will

correlate ratings across populations of users to the current new user.

Now that we have covered how recommendation systems are usually selected and categorized,

we will explore proposed ingredient-based systems. Although recommendation systems have

many applications within consumer industry, recipe recommendation systems are niche amongst

the AI research community. Our model will focus on content-based filtering systems. In 2008,

[7] proposed a model using a KNN classifier to make recommendations based on similar recipes.

[8] utilized natural language processing techniques to parse recipe instructions and transform

them into graphs showing the sequential flow. However, this did not consider ingredients nor

user preferences. Authors of [6] propose a collaborative filtering approach called content-driven

temporal-regularized matrix factorization (CTRMF) for recipe recommendation systems. This

method aims to integrate diverse content information such as ingredients, categories, preparation

methods, and nutritional faces into a matrix factorization model. This captures the latent

correlations amongst recipe elements and exploits the temporal biases for future

recommendations. In [9], the authors propose a recommendation model with a graph

convolutional network, which allows multiple embedding layers and propagation mechanisms to

capture the complex relationship between ingredients.

2.4 Cross-Domain Influence of Product Recommendation Systems

While recipe recommendation systems may be considered a niche application, other

recommendation systems in various domains have garnered significant research due to their

unsupervised nature. One such area is that of product recommendation systems. More

specifically, we will look at fashion recommendation systems with multi-modal data. Despite

their domain differences, both recommendation systems share similarities in their need for

semantic understanding, feature extraction, focus on user preferences, similarity measurements,

and context awareness.

Our proposed solution will consist of multi-modal embeddings. Embeddings play a crucial role

in capturing visual and textual information in a lower-dimensional space. By reducing images to

embeddings, similarities between items based on key features are facilitated. In [1], a

Convolutional Neural Network (CNN) was used as an embedding function by extracting

important features. We see this type of embedding function repeated across studies, such as in

[2] and [3]. Siamese CNNs considering pairwise compatibilities and multi-modal embeddings

combining text and image data are also common approaches to fashion embeddings [2].

Outfits, like ingredients in a recipe, are sets of arbitrary lengths which match contextually and

are compatible with each other. Measuring the dot product between two items should reflect their

compatibility [2]. Nearest neighbor approaches to outfit recommendation systems have been

taken [1], but prove to have little semantic understanding. Visual Compatibility Learning such as

CNNs and Siamese networks have captured the compatibility across fashion items in [4], but

face the vanishing gradients issue. In order to overcome this, LSTMs have been proposed.

4

LSTMs regulate the use of memory while capturing sequential dependencies. Thus, by treating

the set as a sequence, bidirectional LSTMs have been proposed with visual-semantic embedding

[4]. This approach was built upon by [3], where a CNN serves as an embedding function, a

bidirectional LSTM would learn sequential outfit combinations, a Visual-Semantic Embedding

model would manage multimodal data, and a Style Embedded Autoencoder would learn to

predict style vectors for each outfit. More recently [5], graph neural networks have been used

with significant improvement (96 percent accuracy). Such research in different domains can

assist us with finding a new and improved solution for recipe recommendations. Our proposed

method will explore multimodal embeddings with cosine similarity matrices. Because we are

using image data, K-means clustering may be necessary to preserve image features. K-means

clustering was found to take patterns and designs on clothing imaging in a submission for

Kaggle’s H&M Personalized Fashion Recommendation Challenge. Within this approach, VGG-

16 was used to extract image features.

3. Introduction to Multimodal Embedding, Similarity Analysis,

& Clustering Methods

In the following sections, we will explore multimodal embedding techniques, similarity analysis

methods such as cosine similarity, and clustering methods such as K-means Clustering and

Spectral Clustering.

3.1 Image Embeddings

Image embedding is a technique used to represent images as feature representations in lower-

dimensional space. Images tend to be high-dimensional vectors that often carry a lot of noise. By

embedding images, the essence of an image can be captured by preserving meaningful features

and important information. Image embeddings are often used in pre-processing steps for models

to reduce computational expenses and making image retrieval, object recognition, and clustering

more efficient. Several embedding techniques such as PCA, LDA, autoencoders, attention-based

methods, and Siamese networks can be used. More recently, there has been a focus on utilizing

deep learning to generate image embeddings. One such architecture, VGG-16, has been an

effective model for feature extraction. Due to its straightforward and versatile architecture, it has

become a popular technique. VGG-16 is a convolutional network compromising of 16 layers, 13

of which are convolutional layers. Because of its usage of small 3x3 convolutional filters, it

delivers a more uniform representation of features across images. The model is considerably

deep, enabling it to extract complex features. Using pre-trained weights from large datasets like

ImageNet, it can be used for image embedding through transfer learning. Images are passed

through the network, and the output from the convolutional layers is taken as an image

embedding. This embedding can then be utilized for several machine learning tasks. Although

the model offers a lot of benefits, it has its limitations. The most severe limitation is its high

computational cost; it takes a lot of time and computational units to run. Limited memory and

storage resources greatly affect the ability to apply this model efficiently. As with other neural

networks, VGG-16 is prone to vanishing and exploding gradient problems. This can make it

challenging to update weights effectively. While VGG-16 is often used as a preliminary

5

approach to test machine learning applications, other more advanced architectures are being used

such as ResNet, Inception, Vision Transformers, and DenseNet. Such models may perform better

on embedding tasks.

3.2 Word Embeddings

Word embeddings refer to vectorized representations of words, capturing semantic and syntactic

relationships between words. Embeddings are different than one-hot encoded vectors, as they

reduce the problem of sparsity and lack of relationships between words. Word embeddings map

words to vectors where words with similar meanings are placed near each other. Although there

are several word embedding techniques, one of the most popular methods is Word2Vect. The

architecture is made of two models: Continuous Bag of Words and Skip-gram. One model

predicts a target word based on the surrounding context while the other predicts context based on

a target word. By using neural networks, embeddings are updated to maximize the probability of

accurate prediction. Other word embedding methods are GloVe, ELMo, fastText, & BERT.

Word2Vec remains one of the most popular methods due to its computational efficiency and

capturing of semantic relationships. This is counterbalanced by its limitations in capturing

complex embeddings, as the networks used in the models are shallow.

3.3 Similarity Analysis in Recommendation Systems

Similarity analysis methods refer to techniques which measure the similarity between two

vectors. More specifically, cosine similarity is a method of calculating the cosine of the angle

between vectors, representing similarity values between -1 and 1. 0 suggests vectors are

orthogonal; -1 represents that vectors are the opposite, and 1 represents that the vectors are

identical. Cosine similarity is very efficient and robust to vector magnitudes. This is often used

in both collaborative and content based filtering, as it can be used to find users with similar tastes

or recipes that are similar to each other.

3.4 Clustering Techniques

There are two approaches to clustering. The first approach uses compactness to cluster points

while the second uses connectivity. Compact algorithms find points that lie close to each other

and form centers. Closeness is measured by distance. Connectivity algorithms focus on points

that are connected or next to each other. Even if the points lie near each other distance-wise, they

may not be clustered together if they are not connected. K-means clustering is a compactness

algorithm while Spectral Clustering is a connectivity algorithm.

6

K-means clustering is an unsupervised technique used to sort data points into distinct clusters

based on their similarity. When applied to embeddings, K-means clustering can be useful for

organization of the complex data representation. K-means clustering also offers several

advantages with multi-modal data, as it facilitates the discovery of latent patterns. Combining

both image and text data enables the identification of culinary themes that may reach beyond

semantic understanding. K-means clustering is also a fairly interpretable algorithm that can

provide similar and relevant data points, enhancing the number of similar recommendations

provided to a user. Some limitations of K-means clustering depend on the nature of the clusters,

such as the shape and number. As the data becomes more complex, non-convex clusters become

harder for K-means to identify. This along with the sensitivity to outliers leads us to consider

alternative methods.

Spectral clustering is used when dealing with complex data distributions and potentially non-

convex clusters. Spectral clustering transforms the data into lower-dimensional space, where

clusters become more separable. Because recommendation systems may have graph-like patterns

within the data, spectral clustering can capture relationships between recipes in a more complex

manner. There are two approaches to spectral clustering, one which uses similarity matrices and

the other which uses K-Nearest Neighbors. With the similarity matrix approach, a similarity

matrix is constructed to capture similarities between data points. The eigenvalues and

eigenvectors of the Laplacian of the similarity matrix are dimensionally reduced and clustered.

With the KNN approach, a KNN graph is constructed. The Laplacian is then used to obtain

spectral embeddings, which are then clustered as before. It should be noted that spectral

clustering is very computationally expensive due to the calculation of eigenvalues. In order to

explore the convexity of the data, we shall attempt both clustering techniques.

4. Data Collection, Analysis, & Initial Pre-Processing

The dataset used for this project can be found on Kaggle under the name “Food Ingredients and

Recipes Dataset with Images”. It consists of a CSV file mapping the title of the food dish,

ingredients, recipe instructions, the corresponding image name, and processed and cleaned

ingredients as well as 13,582 images of each recipe. This dataset was chosen for its usability

rating and size of 216 MB.

7

Within the dataset, 13,305 out of 13,496 titles were found to be unique. About 30 ingredients and

instructions were also found to be repeated. Non unique image names, instructions, and cleaned

ingredients were removed. Thirteen total null values were found in the dataset. Due to the

relatively low numbers, these rows were removed.

 Looking at the data table initially, pre-processing for the ingredient list was necessary. Each

ingredient list contained a measurement unit. However, measurement across ingredients is not

able to be converted, as some are liquids, some are in single units, and some are solids. There are

two possible approaches to process this; either one can delete the metrics, predict the ingredient

list necessary for a dish, and extrapolate the numbers in post-processing steps, or we can separate

the ingredient category into ingredients by units. Due to time restrictions and simplicity of the

model, the first option was chosen. While processing the images, it was found that a few rows

did not contain matching images. These rows were left without an embedding and deleted.

Most Common Ingredients Further

analysis of the dataset led us to find

that there were 4,877 unique

ingredients. The list of the most

common ingredients can be found in

the table. About 1,1882 ingredients

were unique to only one recipe. The

average common ingredient count is

1796.6, but only 10 ingredients are

more commonly found than the

average. This means that the majority

of the dataset has unique ingredients

rather than common ingredients,

which can affect the complexity of the

relationship between recipes. With

less common ingredients found in

most recipes, less complex

relationships might be found. This may

prove easier to cluster, but may affect

the model’s generalizability.

We also analyzed possible associations

between ingredients that frequently

appear together with an Apriori

algorithm. The top association rules

can be found in the below tables. The

chart was primarily sorted by lift,

which measures how likely a

consequent ingredient is found when an

8

antecedent ingredient is present. The lift is the measure of the support of the antecedent and the

consequent divided by the support of the antecedent multiplied by the support of the consequent.

 Antecedents Consequents Lift

 (parmigiano) (reggiano) 59.68

 (reggiano) (parmigiano) 59.68

 (parmigiano, pepper) (reggiano) 59.464

 (reggiano) (parmigiano, pepper) 59.464

 (parmigiano) (reggiano, pepper) 59.428

 (reggiano, pepper) (parmigiano) 59.428

 (parchment) (paper) 47.677

 (paper) (parchment) 47.677

 (squash) (butternut) 46.262

 (butternut) (squash) 46.262

We can visualize this further across

the dataset with a scatter plot

representing association rules, their

lift, and confidence values. We can

note the majority of the points are

clustered near the bottom of the

graph, suggesting that the presence of

one ingredient does not strongly

impact a consequent ingredient. This

may indicate that ingredients are

commonly found independently of

each other, with the exception of a

few outliers marked in warmer tones. We also note that the confidence is spread across the

graph, indicating that the strength of the association rules are varied. Analysis of lift and

confidence underscores the possibility of diversity of ingredients within our dataset.

5. Methodology

The proposed pipeline for this project is delineated in the following steps:

1. Data Pre-Processing

2. Image Embedding with a pre-trained VGG-16 on ImageNet

3. Ingredient Embedding with Word2Vec

4. Concatenation of Embeddings

5. Clustering

6. User Input Processing

7. Centroid Similarity with User Input

8. Recipe Filtering

9. Display of Results

9

Proposed Architecture

The proposed architecture involves embedding steps, clustering steps, and user similarity

filtration. Embedding images involved minimal pre-processing steps, as the VGG-16 model

extracts features. Word Embeddings required initial parsing, punctuation removal, tokenization,

filtering of non-alphabetical and non-informative words, lowercasing, and lemmatization. Words

were then passed into Word2Vec, which produced a vector size of 100 features per recipe row.

In order to concatenate the word and image embeddings, the image embeddings were passed into

a dense layer that converted the embedding from a (3,3,512) vector per row to a vector size of

100 per recipe row. Both vectors were stacked to create a concatenated embedding of shape

(1,200) per recipe row.

5.1 Visualizations of Arrays

In the graph we can see the visual representations of the word embeddings (red), the image

embeddings (green), and the combined embedding (blue) after dimensional reduction (n

components=2). Based on the graph, it is possible that image embeddings dominate the data

points, calling for possible standardization of the embedded vectors.

10

5.2 Algorithmic Experiments: Convexity

In the following section, we will explore the dependencies in the recipe data set by

experimenting with a convex and non-convex clustering algorithm. Our experiments will shed

light into the complexity of the relationship between ingredients. We will also measure the

effects of standardization on the embeddings. Silhouette Scores and Within Cluster Sum of

Squares (WCSS) will be used for comparison.

Non-Standardized K-Means Clustering

Standardized K-Means Clustering

Similarity Matrix Spectral Clustering KNN Spectral Clustering

11

The graphs above show Silhouette and WCSS scores for K-Means and Spectral Clustering

Algorithms. It can be noted that the ideal number of clusters for each algorithm is as follows:

k=12 for Unsupervised K-means, k=10 for Supervised K-means, k= 3 for Similarity Matrix

Spectral Clustering, & 2 for KNN Spectral Clustering. Silhouette scores for Spectral Clustering

and Unstandardized K-means were rather low, with most staying near 0. Standardized K-means

had higher silhouette scores, with the maximum staying at 0.38. It should be noted that although

silhouette scores across all models were not high, it may not mean the model is ineffective, as

silhouette scores describe how far apart clusters are from each other. Standardization was

attempted with a KNN spectral clustering of 3 but was unable to be reproduced on more

clusterings due to computational expenses and RAM issues. A significant increase in the

silhouette score was seen, as it was 0.12 at 3 clusters. Standardized K-means clustering

performed best on the data and thus will be used for the final model.

5.3 Algorithmic Experiments: Uni-Modal vs Multi-Modal Data

In the following section, we will explore whether features from image data will influence the

model’s ability to cluster. An experiment was run on clustering with only word embedding data

and the other with combined data. The results for standardized and unstandardized embeddings

can be found below:

Unstandardized

Standardized

12

 We can note that the effect of standardization is less pronounced with uni-modal data, and both

unstandardized and standardized models have a lower within cluster sum of squares than the

multi-modal data. The silhouette scores are also considerably higher in uni-modal data than in

multi-modal data. This may mean that the feature extraction method chosen for images may not

be sufficiently capturing significant information, or that image data does not enhance the model.

5.4 User Output Methods and Filtering

After choosing a clustering type, we can move on to applying the pipeline to user input. User

input will need to be preprocessed and embedded in the same way that the training data was

processed. In order to calculate the centroid most similar to user input, cosine similarity is

calculated between the k cluster centroids and the input. Using the top three most relevant

clusters, an output temporary data frame is created. This data frame can be filtered in any way

the user desires. For example, if the user has an allergy, the data frame will exclude recipes with

the allergen. For this particular phase of the project, only one constraint was tested. The chosen

constraint allows the output to only be recipes with the inputted ingredients. The output of the

model will have a random recommended recipe from the filtered data frame, the ingredients, the

instructions, and the photo.

6. Results

6.1 2-Dimensional Clustering

Visualizations

The following results are visualizations of

the attempted models. We note that these

visualizations are dimensionally reduced

and may not accurately represent the data.

From the image, it becomes clear that uni-

modal embeddings have sharp and clear

cluster boundaries while multi-modal

embeddings do not.

6.2 User Output & Analysis
Although visual analysis, silhouette score,

and WCSS were used to determine the

quality of the clustering techniques, it is

difficult to evaluate the successfulness of

the model due to its unsupervised nature.

Many methods of evaluation such as

precision, recall, F1 score, and AUC all

depend on user ratings and studies. We

can only analyze to the extent of the

quality of the clusters, initial input-output

experiments, and user studies to

13

understand the quality and relevance of the recommendations. Below are some sample outputs of

the algorithm. At first glance, the algorithm performs almost ideally.

Let us now analyze the value counts of our standardized K-means clusters. For each cluster, we

count the number of recipes that are found. The largest cluster, cluster 2, has 1893 data points

14

while cluster 6, the smallest cluster, has 629.

This range is relatively small, and the

distribution of cluster sizes appears to be

relatively even. The table below and graph show

the distribution:

Cluster Number Count

2 1893

0 1616

5 1404

1 1393

4 1170

3 1137

7 989

9 944

8 883

6 629

In order to improve interpretability of the clusters, we analyzed the top ten ingredients in each

cluster. This can be found in the charts below.

15

6.3 Usability Experiments: Input Format

As seen above, initial input examples seemed to perform quite well but need further test cases to

prove robustness and easy usability for customers.

6.3.1. Out of Domain Test

This test assesses how the model performs with ingredients that are not part of the data set. Due

to the current constraints requiring output to contain all ingredients, the model should return

nothing. When tested, the model returned a fail error. This output will need to be corrected in

future versions indicating to users that there are no recipes with the inputted ingredients.

6.3.2. Unstructured Ingredient Parsing Test

This test assesses model performance when input ingredients are not separated by commas. This

test produces errors as the model reads the entire input as one ingredient. Further parsing

techniques or automated suggested corrections will be necessary to fix this error.

6.3.3. Single Ingredient Test

This test assesses model performance when user input includes only one ingredient. After several

trial tests, the model was able to perform well with only one ingredient.

6.3.4. Tokenization Errors Test

This test assesses weather tokenization errors affect model performance. It was found that

depending on the type of tokenization the model may or may not have issues. For example, when

steak is input as an example ingredient, the model will qualify a recipe with the ingredient “ham

steak”, an obvious tokenization error, as a potential candidate. Other tokenization errors such as

missing pluralized endings can cause the model to incorrectly filter out recipes. This suggests

better tokenization methods and processing are necessary for a more precise model.

6.3.5. Chronological Order Test

It is important to assess whether the order of user input matters to the result of the model. After

performing this test, it was found that the output will remain the same regardless of the order.

For example, if the user inputs “potato, steak”, their outputs will be the same as if they put in

“steak, potato”.

6.3.6. Special Character Test

This test assesses whether special characters affect the output of the model. Due to the lack of

further preprocessing of user input, extra characters affect the ingredient list. In order to fix this

problem, all non-alphabetical characters must be deleted in the list.

6.3.7. Spelling Errors Test

This test assesses whether spelling errors affect the output of the model. Without automated

spelling checks, the model is unable to understand similar ingredients that may be misspelled.

16

7. Conclusion

Our pipeline and experiments set out to answer whether embedding and clustering techniques

effectively represent ingredient data well for recommendation purposes. In this study, we have

analyzed whether multi-modal data captures meaningful features. Our experimentation leads us

to conclude that further work will need to be done on the embedding methods, as uni-modal

word data clustered more definitively than the embeddings with added image data. We also can

conclude that the usage of image data makes standardization a requirement for the model to

function accurately, as image data and word embeddings are scaled differently. Different models

may be attempted and tested in future work to further determine the consequences of multi-

modal data.

Through our analysis of clusters and similarity methods, we can conclude that clustering

generally captures unseen relationships between ingredients. When looking at the top ten

ingredients of each cluster, we can see certain cuisine types forming. For example, Cluster 3

contains the top ingredients of lime, soy, sesame, pepper, sugar, rice, ginger, fish, peanuts, and

scallions. These ingredients are typically associated with Asian-inspired cuisines. Cluster 1

contains sugar, egg, cream, flour, lemon, butter, milk, egg yolk, orange, almond, otherwise

known as typical pastry and dessert ingredients. We can also note that Cluster 6, with ingredients

containing lemon, pepper, Greek yogurt, wine, honey, milk, sugar, chive, orange, mayonnaise,

may represent Mediterranean cuisines. Similarly, Cluster 8 contains Italian cuisine ingredients,

Cluster 9 contains French cuisine ingredients, Cluster 7 contains very sweet ingredients used for

drinks, and Cluster 2 may be Western or American cuisines. Although we can see a divide in

cuisine types, there are a few clusters that may be unnecessary or training data was unable to

define them further. Cluster 0 is an atypical cluster with very broad ingredients. This cluster was

rather large in value count, thus meaning that further training data is missing. Certain clusters,

such as clusters 4 and 5, contain repeated ingredients from French and dessert cuisine types. This

may signify that too many clusters were selected. Because the K clusters were selected with the

elbow method, there may be some room for interpretation error. Considering the unimodal data

embeddings selected 7 clusters as optimal and the multi-modal selected 10 clusters as optimal, it

may mean that these 3 extra clusters that we are seeing may be unnecessary as a whole without

further training data. Although we can spot cuisine patterns appearing from our clusters, we do

not have specific cuisine classification in our training set. Using a dataset in the future containing

cuisine types could help with accuracy metrics. From the given clusters, it may be that our

training data was biased towards specific cuisine types, as there are several that are missing.

Further studies with better data could improve the quality of the model and the diversity of

output. In future studies, it would be interesting to include recipe instructions in the embeddings.

This may also help creating a model that estimates cook times, but may also add beneficial

information with the differing styles of cooking ingredients together. In conclusion, while this

pipeline shows promise in its preliminary stages, further refinement and examination is

necessary to enhance its robustness.

17

8. References

[1] M Sridevi et al. Personalized fashion recommender system with image-based neural etworks.

https://iopscience.iop.org/article/10.1088/1757-899X/981/2/022073/pdf, 2020.

[2] Elaine M. Bettaney, Stephen R. Hardwick, Odysseas Zisimopoulos, and Benjamin Paul

Chamberlain. Fashion outfit generation for e-commerce. arXiv preprint arXiv:1904.00741, 2019.

[3] Takuma Nakamura and Ryosuke Goto. Out-fit generation and style extraction via bidirec-

tional lstm and autoencoder. arXiv preprint arXiv:1807.03133, 2018.

[4] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S. Davis. Learning fashion ompatibility

with bidirectional lstms, 2017.

[5] Guillem Cucurull, Perouz Taslakian, and David Vazquez. Context-aware visual compatibility

prediction. arXiv preprint arXiv:1902.03646v2, 2019.

[6] Lin, C.-J., Kuo, T.-T., & Lin, S.-D. A Content-Based Matrix Factorization Model for Recipe

Recommendation. In Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-

06605-9_46

[7] Zhang Q., Hu, R., Namee, B., Delany, S.: Back to the future: Knowledge light case base

cookery. Technical report, Technical report, Dublin Institute of Technology (2008)

[8] Wang, L., Li, Q., Li, N., Dong, G., Yang, Y.: Substructure similarity measurement in Chinese

recipes. In: Proceeding of the 17th International Conference on World Wide Web

[9] Xiaoyan Gao, Fuli Feng, Heyan Huang, Xian-Ling Mao, Tian Lan, Zewen Chi. Food

recommendation with graph convolutional network. Information Sciences, Volume 584, January

2022, Pages 170-183. DOI: https://doi.org/10.1016/j.ins.2021.10.040

Dataset: https://www.kaggle.com/datasets/pes12017000148/food-ingredients-and-recipe-dataset-

with-image

https://doi.org/10.1016/j.ins.2021.10.040

