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1. Abstract

Food recommendation systems play a crucial role in assisting discovery of new recipes for users
based on preference, ingredients, and health. In this paper, we present a recipe recommendation
algorithm that leverages embedding with clustering & similarity analysis for ingredient-based
input. This approach has been used for several recommendation systems recently with results
that compete with state-of-the-art recommendation systems. We will use multi-modal data to
understand further similarities between recipes and ingredients and conduct exploratory
analysis of both the data and the model with further preprocessing and fine-tuning. The
performance of our model will be compared to state-of-the-art recommendation systems using
precision, recall, F1 score, and NDCG in future steps. Further, we will cross-examine the
generated ingredient recipe list with existing recipes both in the dataset and beyond. Through
integration with smart devices, this project aims to assist users in making informed decisions
about what to cook.

2.  Introduction to Recipe Recommendation Systems

The Internet currently has over 10,000 cooking websites, providing users with an overwhelming
amount of recipes to search through. Creating a recommendation system can assist users with
such filtering. Filtering features within recommendation systems can include nutritional values,
type of cuisine, cooking processes, etc.[6]. Because there is no limit on ingredients used for
recipes and few ratings for recipes exist, challenges for preference-based recommendation can
include the cold-start and sparse data problems.

2.1 Background

As user access to smart devices and instant information retrieval continues to rise, the
importance of diet preferences and simplified meal planning has also grown. Consequently,
efficient recipe recommendation systems are necessary to cater to these evolving needs.
Although extensive information can be found on the internet, it can be overwhelming for users to
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search for what they are looking for, let alone vocalize their preferences. Studies have shown that
the excess of options on the internet leads to more frustration, making user-based
recommendation systems a vital solution for simplifying decision-making processes with curated
personalized content.

This paper seeks to address common research questions associated with food recommendation
systems such as:

e Can embedding techniques effectively represent multimodal data such as ingredients and
recipe images to capture a meaningful relationship with the recipe data?

e Does providing recipe instructions benefit or confuse the model’s ability to capture
meaningful relationships?

e Do clustering and similarity technologies enhance the understanding of dependencies in
the recipe dataset leading to improved results?

e How well does the recommendation algorithm perform in generating diverse and relevant
recipe suggestions based on user input ingredients?

e How well does this recommendation system perform in real-world scenarios, and how
adaptable is it to diverse culinary preferences and user input?

2.2 Related Work and Current State-of-the-Art Research

Over the years, several recipe recommendation systems have been proposed based on different
constraints. Food recommendation systems can be categorized into four categories: health related
systems, ingredient-based systems, time-aware systems, and cluster-based systems. Health based
systems incorporate nutritional factors into recommendation models, allowing users to select
healthier eating habits. Ingredient-based recommendation systems focus on the content of recipes
as well as user ratings and constraints regarding specific ingredients. Time-aware
recommendation systems attempt to capture temporal information of user ratings, allowing the
system to weigh the importance of older and newer user ratings to create a better preference
prediction. Cluster-based models deploy grouping mechanisms for food items, where similar
foods are identified and ratings for unknown foods can be predicted. This eliminates the cold-
start problem of not having user preference initially. Our system will target ingredient-based
content in the current phase with cluster-based methods and will delve deeper into expanding the
model for user preference in the next phase.

2.3 Ingredient-Based Systems

Food recommendation algorithms tackle the information overload problem internet users face by
using intelligent algorithms to make personalized food recommendations from a wide range of
choices. All recommendation algorithms are divided into three search factors: attribute tagging,
visual searches, and natural language searches. Attribute tagging involves applying automated
food tagging and categorization to data, allowing users to filter search through different food
attributes. Visual searches use computer vision to find and suggest foods that are most visually
similar to the images they upload. Natural language searches involve customers searching for
phrases to describe a particular recipe. When approaching a recommendation system, there are
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two basic approaches: collaborative filtering and content-based filtering, in which the former
relies on historical interactions and the latter on item characteristics. Content-based filtering will
rely on informative content descriptors to create a prediction. Collaborative filtering will
correlate ratings across populations of users to the current new user.

Now that we have covered how recommendation systems are usually selected and categorized,
we will explore proposed ingredient-based systems. Although recommendation systems have
many applications within consumer industry, recipe recommendation systems are niche amongst
the Al research community. Our model will focus on content-based filtering systems. In 2008,
[7] proposed a model using a KNN classifier to make recommendations based on similar recipes.
[8] utilized natural language processing techniques to parse recipe instructions and transform
them into graphs showing the sequential flow. However, this did not consider ingredients nor
user preferences. Authors of [6] propose a collaborative filtering approach called content-driven
temporal-regularized matrix factorization (CTRMF) for recipe recommendation systems. This
method aims to integrate diverse content information such as ingredients, categories, preparation
methods, and nutritional faces into a matrix factorization model. This captures the latent
correlations amongst recipe elements and exploits the temporal biases for future
recommendations. In [9], the authors propose a recommendation model with a graph
convolutional network, which allows multiple embedding layers and propagation mechanisms to
capture the complex relationship between ingredients.

2.4  Cross-Domain Influence of Product Recommendation Systems

While recipe recommendation systems may be considered a niche application, other
recommendation systems in various domains have garnered significant research due to their
unsupervised nature. One such area is that of product recommendation systems. More
specifically, we will look at fashion recommendation systems with multi-modal data. Despite
their domain differences, both recommendation systems share similarities in their need for
semantic understanding, feature extraction, focus on user preferences, similarity measurements,
and context awareness.

Our proposed solution will consist of multi-modal embeddings. Embeddings play a crucial role
in capturing visual and textual information in a lower-dimensional space. By reducing images to
embeddings, similarities between items based on key features are facilitated. In [1], a
Convolutional Neural Network (CNN) was used as an embedding function by extracting
important features. We see this type of embedding function repeated across studies, such as in
[2] and [3]. Siamese CNNs considering pairwise compatibilities and multi-modal embeddings
combining text and image data are also common approaches to fashion embeddings [2].

Outfits, like ingredients in a recipe, are sets of arbitrary lengths which match contextually and
are compatible with each other. Measuring the dot product between two items should reflect their
compatibility [2]. Nearest neighbor approaches to outfit recommendation systems have been
taken [1], but prove to have little semantic understanding. Visual Compatibility Learning such as
CNNs and Siamese networks have captured the compatibility across fashion items in [4], but
face the vanishing gradients issue. In order to overcome this, LSTMs have been proposed.



LSTMs regulate the use of memory while capturing sequential dependencies. Thus, by treating
the set as a sequence, bidirectional LSTMs have been proposed with visual-semantic embedding
[4]. This approach was built upon by [3], where a CNN serves as an embedding function, a
bidirectional LSTM would learn sequential outfit combinations, a Visual-Semantic Embedding
model would manage multimodal data, and a Style Embedded Autoencoder would learn to
predict style vectors for each outfit. More recently [5], graph neural networks have been used
with significant improvement (96 percent accuracy). Such research in different domains can
assist us with finding a new and improved solution for recipe recommendations. Our proposed
method will explore multimodal embeddings with cosine similarity matrices. Because we are
using image data, K-means clustering may be necessary to preserve image features. K-means
clustering was found to take patterns and designs on clothing imaging in a submission for
Kaggle’s H&M Personalized Fashion Recommendation Challenge. Within this approach, VGG-
16 was used to extract image features.

3. Introduction to Multimodal Embedding, Similarity Analysis,
& Clustering Methods

In the following sections, we will explore multimodal embedding techniques, similarity analysis
methods such as cosine similarity, and clustering methods such as K-means Clustering and
Spectral Clustering.

3.1 Image Embeddings

Image embedding is a technique used to represent images as feature representations in lower-
dimensional space. Images tend to be high-dimensional vectors that often carry a lot of noise. By
embedding images, the essence of an image can be captured by preserving meaningful features
and important information. Image embeddings are often used in pre-processing steps for models
to reduce computational expenses and making image retrieval, object recognition, and clustering
more efficient. Several embedding techniques such as PCA, LDA, autoencoders, attention-based
methods, and Siamese networks can be used. More recently, there has been a focus on utilizing
deep learning to generate image embeddings. One such architecture, VGG-16, has been an
effective model for feature extraction. Due to its straightforward and versatile architecture, it has
become a popular technique. VGG-16 is a convolutional network compromising of 16 layers, 13
of which are convolutional layers. Because of its usage of small 3x3 convolutional filters, it
delivers a more uniform representation of features across images. The model is considerably
deep, enabling it to extract complex features. Using pre-trained weights from large datasets like
ImageNet, it can be used for image embedding through transfer learning. Images are passed
through the network, and the output from the convolutional layers is taken as an image
embedding. This embedding can then be utilized for several machine learning tasks. Although
the model offers a lot of benefits, it has its limitations. The most severe limitation is its high
computational cost; it takes a lot of time and computational units to run. Limited memory and
storage resources greatly affect the ability to apply this model efficiently. As with other neural
networks, VGG-16 is prone to vanishing and exploding gradient problems. This can make it
challenging to update weights effectively. While VGG-16 is often used as a preliminary



approach to test machine learning applications, other more advanced architectures are being used
such as ResNet, Inception, Vision Transformers, and DenseNet. Such models may perform better
on embedding tasks.

3.2  Word Embeddings

Word embeddings refer to vectorized representations of words, capturing semantic and syntactic
relationships between words. Embeddings are different than one-hot encoded vectors, as they
reduce the problem of sparsity and lack of relationships between words. Word embeddings map
words to vectors where words with similar meanings are placed near each other. Although there
are several word embedding techniques, one of the most popular methods is Word2Vect. The
architecture is made of two models: Continuous Bag of Words and Skip-gram. One model
predicts a target word based on the surrounding context while the other predicts context based on
a target word. By using neural networks, embeddings are updated to maximize the probability of
accurate prediction. Other word embedding methods are GloVe, ELMo, fastText, & BERT.
Word2Vec remains one of the most popular methods due to its computational efficiency and
capturing of semantic relationships. This is counterbalanced by its limitations in capturing
complex embeddings, as the networks used in the models are shallow.

3.3 Similarity Analysis in Recommendation Systems

Similarity analysis methods refer to techniques which measure the similarity between two
vectors. More specifically, cosine similarity is a method of calculating the cosine of the angle
between vectors, representing similarity values between -1 and 1. 0 suggests vectors are
orthogonal; -1 represents that vectors are the opposite, and 1 represents that the vectors are
identical. Cosine similarity is very efficient and robust to vector magnitudes. This is often used
in both collaborative and content based filtering, as it can be used to find users with similar tastes
or recipes that are similar to each other.

3.4 Clustering Techniques

There are two approaches to clustering. The first approach uses compactness to cluster points
while the second uses connectivity. Compact algorithms find points that lie close to each other
and form centers. Closeness is measured by distance. Connectivity algorithms focus on points
that are connected or next to each other. Even if the points lie near each other distance-wise, they
may not be clustered together if they are not connected. K-means clustering is a compactness
algorithm while Spectral Clustering is a connectivity algorithm.
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K-means clustering is an unsupervised technique used to sort data points into distinct clusters
based on their similarity. When applied to embeddings, K-means clustering can be useful for
organization of the complex data representation. K-means clustering also offers several
advantages with multi-modal data, as it facilitates the discovery of latent patterns. Combining
both image and text data enables the identification of culinary themes that may reach beyond
semantic understanding. K-means clustering is also a fairly interpretable algorithm that can
provide similar and relevant data points, enhancing the number of similar recommendations
provided to a user. Some limitations of K-means clustering depend on the nature of the clusters,
such as the shape and number. As the data becomes more complex, non-convex clusters become
harder for K-means to identify. This along with the sensitivity to outliers leads us to consider
alternative methods.

Spectral clustering is used when dealing with complex data distributions and potentially non-
convex clusters. Spectral clustering transforms the data into lower-dimensional space, where
clusters become more separable. Because recommendation systems may have graph-like patterns
within the data, spectral clustering can capture relationships between recipes in a more complex
manner. There are two approaches to spectral clustering, one which uses similarity matrices and
the other which uses K-Nearest Neighbors. With the similarity matrix approach, a similarity
matrix is constructed to capture similarities between data points. The eigenvalues and
eigenvectors of the Laplacian of the similarity matrix are dimensionally reduced and clustered.
With the KNN approach, a KNN graph is constructed. The Laplacian is then used to obtain
spectral embeddings, which are then clustered as before. It should be noted that spectral
clustering is very computationally expensive due to the calculation of eigenvalues. In order to
explore the convexity of the data, we shall attempt both clustering techniques.

4.  Data Collection, Analysis, & Initial Pre-Processing

The dataset used for this project can be found on Kaggle under the name “Food Ingredients and
Recipes Dataset with Images”. It consists of a CSV file mapping the title of the food dish,
ingredients, recipe instructions, the corresponding image name, and processed and cleaned
ingredients as well as 13,582 images of each recipe. This dataset was chosen for its usability
rating and size of 216 MB.



Ingredient

sugar

pepper 7

lemon
egg
flour
cream
butter
chicken
milk
wine
lime
orange
onion
cheese
tomato

rice

broth
inger

ney 1

coconut
pan

syrup

bread

celer
chocolate
SOy
almond
sesamle
apple
yolk

Within the dataset, 13,305 out of 13,496 titles were found to be unique. About 30 ingredients and
instructions were also found to be repeated. Non unique image names, instructions, and cleaned
ingredients were removed. Thirteen total null values were found in the dataset. Due to the
relatively low numbers, these rows were removed.

Looking at the data table initially, pre-processing for the ingredient list was necessary. Each
ingredient list contained a measurement unit. However, measurement across ingredients is not
able to be converted, as some are liquids, some are in single units, and some are solids. There are
two possible approaches to process this; either one can delete the metrics, predict the ingredient
list necessary for a dish, and extrapolate the numbers in post-processing steps, or we can separate
the ingredient category into ingredients by units. Due to time restrictions and simplicity of the
model, the first option was chosen. While processing the images, it was found that a few rows
did not contain matching images. These rows were left without an embedding and deleted.

sugar: 6366 times pepper: 6195 times
lemon: 4006 times egg: 3266 times
flour: 3042 times cream: 2817 times
butter: 2454 times chicken: 2049 times
milk: 2008 times wine: 1899 times
lime: 1722 times orange: 1448 times
onion: 1348 times cheese: 1342 times
tomato: 1327 times rice: 1242 times
broth: 1031 times ginger: 1013 times
honey: 925 times coconut: 846 times
pan: 827 times syrup: 818 times
bread: 784 times celery: 770 times
chocolate: 754 times soy: 743 times
almond: 739 times sesame: 739 times
apple: 702 times yolk: 678 times

Most Common Ingredients

1000 2000 3000
Amount

4000 5000 6000

Most Common Ingredients Further
analysis of the dataset led us to find
that there were 4,877 unique
ingredients. The list of the most
common ingredients can be found in
the table. About 1,1882 ingredients
were unique to only one recipe. The
average common ingredient count is
1796.6, but only 10 ingredients are
more commonly found than the
average. This means that the majority
of the dataset has unique ingredients
rather than common ingredients,
which can affect the complexity of the
relationship between recipes. With
less common ingredients found in
most recipes, less complex
relationships might be found. This may
prove easier to cluster, but may affect
the model’s generalizability.

We also analyzed possible associations
between ingredients that frequently
appear together with an Apriori
algorithm. The top association rules
can be found in the below tables. The
chart was primarily sorted by lift,
which measures how likely a
consequent ingredient is found when an



antecedent ingredient is present. The lift is the measure of the support of the antecedent and the
consequent divided by the support of the antecedent multiplied by the support of the consequent.

Antecedents Consequents Lift
(parmigiano) (reggiano) 59.68
(reggiano) (parmigiano) 59.68
(parmigiano, pepper) (reggiano) 59.464
(reggiano) (parmigiano, pepper) 59.464
(parmigiano) (reggiano, pepper) 59.428
(reggiano, pepper) (parmigiano) 59.428
(parchment) (paper) 47.677
(paper) (parchment) 47.677

(squash) (butternut) 46.262
(butternut) (squash) 46.262

Lift vs Confidence

60 [ ® =

We can visualize this further across

the dataset with a scatter plot -
representing association rules, their
lift, and confidence values. We can e

note the majority of the points are
clustered near the bottom of the
graph, suggesting that the presence of 2
one ingredient does not strongly

impact a consequent ingredient. This

may indicate that ingredients are 0
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commonly found independently of o M e
each other, with the exception of a

few outliers marked in warmer tones. We also note that the confidence is spread across the
graph, indicating that the strength of the association rules are varied. Analysis of lift and
confidence underscores the possibility of diversity of ingredients within our dataset.

5.  Methodology

The proposed pipeline for this project is delineated in the following steps:

Data Pre-Processing

Image Embedding with a pre-trained VGG-16 on ImageNet
Ingredient Embedding with Word2Vec

Concatenation of Embeddings

Clustering

User Input Processing

Centroid Similarity with User Input

Recipe Filtering

Display of Results
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The proposed architecture involves embedding steps, clustering steps, and user similarity
filtration. Embedding images involved minimal pre-processing steps, as the VGG-16 model
extracts features. Word Embeddings required initial parsing, punctuation removal, tokenization,
filtering of non-alphabetical and non-informative words, lowercasing, and lemmatization. Words
were then passed into Word2Vec, which produced a vector size of 100 features per recipe row.
In order to concatenate the word and image embeddings, the image embeddings were passed into
a dense layer that converted the embedding from a (3,3,512) vector per row to a vector size of
100 per recipe row. Both vectors were stacked to create a concatenated embedding of shape
(1,200) per recipe row.

5.1 Visualizations of Arrays

PCA Scatter Plot (All Data) PCA Scatter Plot (All Data) PCA Scatter Plot (All Data)
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In the graph we can see the visual representations of the word embeddings (red), the image
embeddings (green), and the combined embedding (blue) after dimensional reduction (n
components=2). Based on the graph, it is possible that image embeddings dominate the data
points, calling for possible standardization of the embedded vectors.



5.2 Algorithmic Experiments: Convexity

In the following section, we will explore the dependencies in the recipe data set by
experimenting with a convex and non-convex clustering algorithm. Our experiments will shed
light into the complexity of the relationship between ingredients. We will also measure the
effects of standardization on the embeddings. Silhouette Scores and Within Cluster Sum of
Squares (WCSS) will be used for comparison.

Non-Standardized K-Means Clustering

Silhouette Scores 108 Elbow Method for Optimal Number of Clusters
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0.02 130
145
0.00
140
0.02

135
25 5.0 75 10.0 125 15.0 17.5 200 123456 78 910111213141516171813202122232425262728293031 32333435 36 3738394041 424344 454647484950
Number of Clusters Number of Clusters
- le6 Elbow Method for Optimal Number of Clusters
0.16 24
014
3 22
012 g
v
4
]
=
0.10 w 2.0
5
E
&
0.08 B
218
9
£
0.06 £
=
004 Le
0.02
5 10 15 20 25 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Mumber of Clusters Number of Clusters.

Similarity Matrix Spectral Clustering KNN Spectral Clustering

—0.0%0
0.025
—0.095
0.020
—0.100
0.015
0.010 -0.105
0.005 ~0.110
0.000
2 3 a 5 6 7 2.0 25 3.0 35 40 45 5.0
Number of Clusters Number of Clusters



The graphs above show Silhouette and WCSS scores for K-Means and Spectral Clustering
Algorithms. It can be noted that the ideal number of clusters for each algorithm is as follows:
k=12 for Unsupervised K-means, k=10 for Supervised K-means, k= 3 for Similarity Matrix
Spectral Clustering, & 2 for KNN Spectral Clustering. Silhouette scores for Spectral Clustering
and Unstandardized K-means were rather low, with most staying near 0. Standardized K-means
had higher silhouette scores, with the maximum staying at 0.38. It should be noted that although
silhouette scores across all models were not high, it may not mean the model is ineffective, as
silhouette scores describe how far apart clusters are from each other. Standardization was
attempted with a KNN spectral clustering of 3 but was unable to be reproduced on more
clusterings due to computational expenses and RAM issues. A significant increase in the
silhouette score was seen, as it was 0.12 at 3 clusters. Standardized K-means clustering
performed best on the data and thus will be used for the final model.

5.3 Algorithmic Experiments: Uni-Modal vs Multi-Modal Data

In the following section, we will explore whether features from image data will influence the
model’s ability to cluster. An experiment was run on clustering with only word embedding data
and the other with combined data. The results for standardized and unstandardized embeddings
can be found below:

Unstandardized
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We can note that the effect of standardization is less pronounced with uni-modal data, and both
unstandardized and standardized models have a lower within cluster sum of squares than the
multi-modal data. The silhouette scores are also considerably higher in uni-modal data than in
multi-modal data. This may mean that the feature extraction method chosen for images may not
be sufficiently capturing significant information, or that image data does not enhance the model.

5.4  User Output Methods and Filtering

After choosing a clustering type, we can move on to applying the pipeline to user input. User
input will need to be preprocessed and embedded in the same way that the training data was
processed. In order to calculate the centroid most similar to user input, cosine similarity is
calculated between the k cluster centroids and the input. Using the top three most relevant
clusters, an output temporary data frame is created. This data frame can be filtered in any way
the user desires. For example, if the user has an allergy, the data frame will exclude recipes with
the allergen. For this particular phase of the project, only one constraint was tested. The chosen
constraint allows the output to only be recipes with the inputted ingredients. The output of the
model will have a random recommended recipe from the filtered data frame, the ingredients, the
instructions, and the photo.

6. Results
6.1 2-Dimensional Clustering
Visualizations

WORD EMBEDDINGS (USTD|STD)

The following results are visualizations of
the attempted models. We note that these
visualizations are dimensionally reduced
and may not accurately represent the data.
From the image, it becomes clear that uni-
modal embeddings have sharp and clear
cluster boundaries while multi-modal
embeddings do not.

6.2 User Output & Analysis
Although visual analysis, silhouette score,
and WCSS were used to determine the
quality of the clustering techniques, it is
difficult to evaluate the successfulness of
the model due to its unsupervised nature.
Many methods of evaluation such as
precision, recall, F1 score, and AUC all
depend on user ratings and studies. We
can only analyze to the extent of the
quality of the clusters, initial input-output
experiments, and user studies to
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understand the quality and relevance of the recommendations. Below are some sample outputs of
the algorithm. At first glance, the algorithm performs almost ideally.

User Input: pineapple, oni

Recommended Recipe Title: Pxn:apple elsiEd Chicken with ]alauenc Salsa

Ingredients: pineapple,sugar ,onion, jal breast

Instructions: Preheat oven to 400°F. smng pineapple juice, brmm sugar, and mustard to boil in small saucepan, stirring to dissolve sugar. Boil until glaze has thickened slightly, about 1 minute. Season with salt and pepper.

Mix pineapple, red pepper, cilantro, onion, and chiles in medium bowl. Season with salt and peppes

Line baking sheet with foil. Place chicken on sheet and brush with glaze. Bake 15 minutes. Brush agam with glaze, then broil until cooked through and golden, watching closely to avoid burning, about 5 minutes longer. Let rest 5 minutes.
Spoon salsa over chicken and serve.

User Input: egg, steak
Recomended Recipe Title: Diner-Style Mestern omlet

rey Jock chesse

Instructions: Heat oil in & sedivm 1pr=lernly T0°) nonsticr swiilet over medium. Cook ham, onion, and bell pepper, stirring often, until softened and beginning to brown, 57 minutes.

Mearwhile, whisk eggs, milk, salt, and pepper in a medium boul.

Reduce heat to medium-low and shake pan so that han and vegetables form a single layer. Pour egg mixture over ham snd vegetables, then sprinkle cheese over. Cook, tilting skillet and gently running & rubber spatula around edges to allow uncooked egg to flow underneath, until eggs

User Input: potato, stesk

Recommended Recipe Title: 3-Ingredient Stesk With Crispy Parmessn Potstoes

Ingredients: potato,parmesan,hanger steak,pepper

Instructions: Place potatoes in a medium pot; add cold water to Cover by 17. Season with sk urm to 3 boil, and cook until potatoes are fork-tender, 12-15 minutes. Transfer to 3 rimmed baking sheet; let cool slightly, then lightly crush with your pal

Hest 3 Toup. od) dn » Jarme biewy skillet over medlim-iiah, Bedice bavt tn owiien-Low s mid bal of U ootatues; messon with /4 L. velt. Cook, turniom once, Wit selden brown; 15-20 mimtes. Tremeter putatues to o plsts. A 3 Tusp. oil, 344 tp. vl
heat remaining 2 Tosp. ol in a 1 et mediim: pigh, Season $cesk with FAlt S peooer ond cook, turning occasionally, until deep brown and on instant-resd thermometer registers 125°F for medium-rare, about 3 minutes per zide.

ermsa oy cutting board. Thinly slice stesk sgainst the grain and serve with potatoes alongside.

and remaining potatoes !

User Input: corn, potato

Recomended Recipe Title: Sweet Potato Fritters

Ingredients: poteto,cornaesl,onion, pepper , deep

Instructions: Hest the oven o 2004F. Line an oven-proof plate or boking sheet with peper towels. Peel and grate the swet potstoes and squesze or press them dry if necessery; you went 3 packed cups the rest for later.

Combine the grated sweet potato, flour, cornmeal, ondon, egg, and sprinkle of salt and pepper and mix well with a fork. If the mixture looks too liquid, add more flour, 1 tablespoon at a tie. (You can make the batter anead of tine and refrigerate for Up to & couple of hours before (
Put 2 inches of ofl in a large pot over medius heat. When the ofl is hot, carefully drop SpOONFUls Of Sweet potato into the pot. (Work in batehes to avoid cromding the pot.)

Cook turning them with tongs or 2 slotted spoon as necessary so they brown on all sides, until they’re cooked through, 5 to 7 minutes. Transfer tne finished fritters to the paper towel-lined plate and put it in the oven to keep warm while you make the rest. Serve Mot or at room tem
Orying Grated Vegetables: Put thew into a strainer over a bowl or Just squeeze thew between your hands.

Hesting Dil for Deep Frying: To use a thermometer for deep frying, clip it on the side of the pot and make sure the tiny hole that registers the tempersture isn’t touching
Putting the Fritters in the Oil: To minimize splattering, hold one spoon clase to the oil and scrape the batter into the oil with another 3

Recopnizing Doneness: The Frittars should be goloen on the outside and Soft but not wet in the a&dle. Check Insideyou should StIT] be abie to tell the sueet potatoes were grated.

the pot. If you don't have a themometer, use o pinch of cornmenl or flour to test when the oil is ready for fn)

Let us now analyze the value counts of our standardized K-means clusters. For each cluster, we
count the number of recipes that are found. The largest cluster, cluster 2, has 1893 data points
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while cluster 6, the smallest cluster, has 629. Cluster Label Distrbution

This range is relatively small, and the
distribution of cluster sizes appears to be
relatively even. The table below and graph show
the distribution:

Cluster Number Count

1893
1616
1404
1393
1170
1137
989
944
883
629

N

V| O O | W[ | PO O

In order to improve interpretability of the clusters, we analyzed the top ten ingredients in each
cluster. This can be found in the charts below.
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6.3 Usability Experiments: Input Format

As seen above, initial input examples seemed to perform quite well but need further test cases to
prove robustness and easy usability for customers.

6.3.1. Out of Domain Test

This test assesses how the model performs with ingredients that are not part of the data set. Due
to the current constraints requiring output to contain all ingredients, the model should return
nothing. When tested, the model returned a fail error. This output will need to be corrected in
future versions indicating to users that there are no recipes with the inputted ingredients.

6.3.2. Unstructured Ingredient Parsing Test

This test assesses model performance when input ingredients are not separated by commas. This
test produces errors as the model reads the entire input as one ingredient. Further parsing
techniques or automated suggested corrections will be necessary to fix this error.

6.3.3. Single Ingredient Test

This test assesses model performance when user input includes only one ingredient. After several
trial tests, the model was able to perform well with only one ingredient.

6.3.4. Tokenization Errors Test

This test assesses weather tokenization errors affect model performance. It was found that
depending on the type of tokenization the model may or may not have issues. For example, when
steak is input as an example ingredient, the model will qualify a recipe with the ingredient “ham
steak”, an obvious tokenization error, as a potential candidate. Other tokenization errors such as
missing pluralized endings can cause the model to incorrectly filter out recipes. This suggests
better tokenization methods and processing are necessary for a more precise model.

6.3.5. Chronological Order Test

It is important to assess whether the order of user input matters to the result of the model. After
performing this test, it was found that the output will remain the same regardless of the order.
For example, if the user inputs “potato, steak”, their outputs will be the same as if they put in
“steak, potato”.

6.3.6. Special Character Test

This test assesses whether special characters affect the output of the model. Due to the lack of
further preprocessing of user input, extra characters affect the ingredient list. In order to fix this
problem, all non-alphabetical characters must be deleted in the list.

6.3.7. Spelling Errors Test

This test assesses whether spelling errors affect the output of the model. Without automated
spelling checks, the model is unable to understand similar ingredients that may be misspelled.
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7. Conclusion

Our pipeline and experiments set out to answer whether embedding and clustering techniques
effectively represent ingredient data well for recommendation purposes. In this study, we have
analyzed whether multi-modal data captures meaningful features. Our experimentation leads us
to conclude that further work will need to be done on the embedding methods, as uni-modal
word data clustered more definitively than the embeddings with added image data. We also can
conclude that the usage of image data makes standardization a requirement for the model to
function accurately, as image data and word embeddings are scaled differently. Different models
may be attempted and tested in future work to further determine the consequences of multi-
modal data.

Through our analysis of clusters and similarity methods, we can conclude that clustering
generally captures unseen relationships between ingredients. When looking at the top ten
ingredients of each cluster, we can see certain cuisine types forming. For example, Cluster 3
contains the top ingredients of lime, soy, sesame, pepper, sugar, rice, ginger, fish, peanuts, and
scallions. These ingredients are typically associated with Asian-inspired cuisines. Cluster 1
contains sugar, egg, cream, flour, lemon, butter, milk, egg yolk, orange, almond, otherwise
known as typical pastry and dessert ingredients. We can also note that Cluster 6, with ingredients
containing lemon, pepper, Greek yogurt, wine, honey, milk, sugar, chive, orange, mayonnaise,
may represent Mediterranean cuisines. Similarly, Cluster 8 contains Italian cuisine ingredients,
Cluster 9 contains French cuisine ingredients, Cluster 7 contains very sweet ingredients used for
drinks, and Cluster 2 may be Western or American cuisines. Although we can see a divide in
cuisine types, there are a few clusters that may be unnecessary or training data was unable to
define them further. Cluster 0 is an atypical cluster with very broad ingredients. This cluster was
rather large in value count, thus meaning that further training data is missing. Certain clusters,
such as clusters 4 and 5, contain repeated ingredients from French and dessert cuisine types. This
may signify that too many clusters were selected. Because the K clusters were selected with the
elbow method, there may be some room for interpretation error. Considering the unimodal data
embeddings selected 7 clusters as optimal and the multi-modal selected 10 clusters as optimal, it
may mean that these 3 extra clusters that we are seeing may be unnecessary as a whole without
further training data. Although we can spot cuisine patterns appearing from our clusters, we do
not have specific cuisine classification in our training set. Using a dataset in the future containing
cuisine types could help with accuracy metrics. From the given clusters, it may be that our
training data was biased towards specific cuisine types, as there are several that are missing.
Further studies with better data could improve the quality of the model and the diversity of
output. In future studies, it would be interesting to include recipe instructions in the embeddings.
This may also help creating a model that estimates cook times, but may also add beneficial
information with the differing styles of cooking ingredients together. In conclusion, while this
pipeline shows promise in its preliminary stages, further refinement and examination is
necessary to enhance its robustness.
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